Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2337671, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38551320

RESUMO

Hepatitis E virus (HEV) variants infecting humans belong to two species: Paslahepevirus balayani (bHEV) and Rocahepevirus ratti (rat hepatitis E virus; rHEV). R. ratti is a ubiquitous rodent pathogen that has recently been recognized to cause hepatitis in humans. Transmission routes of rHEV from rats to humans are currently unknown. In this study, we examined rHEV exposure in cats and dogs to determine if they are potential reservoirs of this emerging human pathogen. Virus-like particle-based IgG enzymatic immunoassays (EIAs) capable of differentiating rHEV & bHEV antibody profiles and rHEV-specific real-time RT-PCR assays were used for this purpose. The EIAs could detect bHEV and rHEV patient-derived IgG spiked in dog and cat sera. Sera from 751 companion dogs and 130 companion cats in Hong Kong were tested with these IgG enzymatic immunoassays (EIAs). Overall, 13/751 (1.7%) dogs and 5/130 (3.8%) cats were sero-reactive to HEV. 9/751 (1.2%) dogs and 2/130 (1.5%) cats tested positive for rHEV IgG, which was further confirmed by rHEV immunoblots. Most rHEV-seropositive animals were from areas in or adjacent to districts reporting human rHEV infection. Neither 881 companion animals nor 652 stray animals carried rHEV RNA in serum or rectal swabs. Therefore, we could not confirm a role for cats and dogs in transmitting rHEV to humans. Further work is required to understand the reasons for low-level seropositivity in these animals.


Assuntos
Doenças do Gato , Doenças do Cão , Vírus da Hepatite E , Hepatite E , Animais , Gatos , Cães , Humanos , Ratos , Vírus da Hepatite E/genética , Hong Kong , Animais Selvagens , Animais de Estimação , Imunoglobulina G
2.
J Clin Microbiol ; 61(12): e0071023, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38038482

RESUMO

The emergence of Rocahepevirus ratti [species HEV ratti (r HEV)] as a causative agent of hepatitis E in humans presents a new potential threat to global public health. The R. ratti genotype 1 (r-1 HEV) variant only shares 50%-60% genomic identity with Paslahepevirus balayani [species HEV balayani (b HEV)] variants, which are the main causes of hepatitis E infection in humans. Here, we report antigen diagnoses for r-1 HEV and b HEV using an enzymatic immunoassay (EIA) method. We detected recombinant virus-like particles protein (HEV 239) of r HEV and b HEV using a collection of hepatitis E virus (HEV)-specific monoclonal antibodies. Two optimal candidates, the capture antibody P#1-H4 and the detection antibodies C145 (P#1-H4*/C145#) and C158 (P#1-H4*/C158#), were selected to detect antigen in infected rat samples and r-1 HEV- or b HEV-infected human clinical samples. The two candidates showed similar diagnostic efficacy to the Wantai HEV antigen kit in b HEV-infected clinical samples. Genomic divergence resulted in low diagnostic efficacy of the Wantai HEV antigen kit (0%, 0 of 10) for detecting r-1 HEV infection. Compared with the P#1-H4*/C145# candidate (80%, 8 of 10), the P#1-H4*/C158# candidate had excellent diagnostic efficacy in r-1 HEV-infected clinical samples (100%, 10 of 10). The two candidates bind to a discrete antigenic site that is highly conserved across r HEV and b HEV. P#1-H4*/C145# and P#1-H4*/C158# are efficacious candidate antibody combinations for rat HEV antigen detection.


Assuntos
Vírus da Hepatite E , Hepatite E , Ratos , Humanos , Animais , Vírus da Hepatite E/genética , Anticorpos Anti-Hepatite , Técnicas Imunoenzimáticas , Testes Imunológicos
3.
J Med Virol ; 95(12): e29313, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100626

RESUMO

Autoantibodies against angiotensin-converting enzyme 2 (ACE2) are frequently reported in patients during coronavirus disease 2019 (COVID-19) with evidence for a pathogenic role in severe infection. However, little is known of the prevalence or clinical significance of ACE2 autoantibodies in late convalescence or following COVID-19 vaccination. In this study, we measured ACE2 autoantibodies in a cohort of 182 COVID-19 convalescent patients, 186 COVID-19 vaccine recipients, and 43 adolescents with post-mRNA vaccine myopericarditis using two ACE2 enzymatic immunoassays (EIAs). ACE2 IgM autoantibody EIA median optical densities (ODs) were lower in convalescent patients than pre-COVID-19 control samples with only 2/182 (1.1%) convalescents testing positive. Similarly, only 3/182 (1.6%) convalescent patients tested positive for ACE2 IgG, but patients with history of moderate-severe COVID-19 tended to have significantly higher median ODs than controls and mild COVID-19 patients. In contrast, ACE2 IgG antibodies were detected in 10/186 (5.4%) COVID-19 vaccine recipients after two doses of vaccination. Median ACE2 IgG EIA ODs of vaccine recipients were higher than controls irrespective of the vaccine platform used (inactivated or mRNA). ACE2 IgG ODs were not correlated with surrogate neutralizing antibody levels in vaccine recipients. ACE2 IgG levels peaked at day 56 post-first dose and declined within 12 months to baseline levels in vaccine recipients. Presence of ACE2 antibodies was not associated with adverse events following immunization including myopericarditis. One convalescent patient with ACE2 IgG developed Guillain-Barre syndrome, but causality was not established. ACE2 autoantibodies are observed in COVID-19 vaccine recipients and convalescent patients, but are likely innocuous.


Assuntos
COVID-19 , Miocardite , Adolescente , Humanos , COVID-19/prevenção & controle , Autoanticorpos , Vacinas contra COVID-19/efeitos adversos , Enzima de Conversão de Angiotensina 2 , Vacinação , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
4.
Chem Sci ; 14(38): 10570-10579, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37799995

RESUMO

Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.

5.
JHEP Rep ; 5(9): 100793, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37575885

RESUMO

Background & Aims: Rat hepatitis E virus (Rocahepevirus ratti; HEV-C1) is an emerging cause of hepatitis E that is divergent from conventional human-infecting HEV variants (Paslahepevirus balayani; HEV-A). Validated serological assays for HEV-C1 are lacking. We aimed to develop a parallel enzymatic immunoassay (EIA) system that identifies individuals with HEV-C1 exposure. We also aimed to conduct the first HEV-C1 seroprevalence study in humans using this validated EIA system. Methods: Expressed HEV-A (HEV-A4 p239) and HEV-C1 (HEV-C1 p241) peptides were characterised. Blood samples were simultaneously tested in HEV-A4 p239 and HEV-C1 p241 IgG EIAs. An optical density (OD) cut-off-based interpretation algorithm for identifying samples seropositive for HEV-A or HEV-C1 was validated using RT-PCR-positive infection sera. This algorithm was used to measure HEV-C1 seroprevalence in 599 solid organ transplant recipients and 599 age-matched immunocompetent individuals. Results: Both peptides formed virus-like particles. When run in HEV-A4 p239 and HEV-C1 p241 EIAs, HEV-A and HEV-C1 RT-PCR-positive samples formed distinct clusters with minimal overlap in a two-dimensional plot of optical density values. The final EIA interpretation algorithm showed high agreement with RT-PCR results (Cohen's κ = 0.959) and was able to differentiate HEV-A and HEV-C1 infection sera with an accuracy of 94.2% (95% CI: 85.8-98.4%). HEV-C1 IgG seroprevalence was 7/599 (1.2%) among solid organ transplant recipients and 4/599 (0.7%) among immunocompetent individuals. Five of 11 (45.5%) of these patients had history of transient hepatitis of unknown cause. Conclusions: HEV-C1 exposure was identified in 11/1198 (0.92%) individuals in Hong Kong indicating endemic exposure. This is the first estimate of HEV-C1 seroprevalence in humans. The parallel IgG EIA algorithm is a valuable tool for investigating epidemiology and risk factors for HEV-C1 infection. Impact and Implications: Rat hepatitis E virus has recently been discovered to infect humans, but antibody tests for this infection are lacking, making it difficult to gauge how common this infection is. We developed an antibody test algorithm that can identify individuals with past rat hepatitis E virus exposure. We used this algorithm to estimate rat hepatitis E exposure rates in humans in Hong Kong and found that approximately 1% of all tested people had been exposed to this virus previously.

6.
Front Cell Infect Microbiol ; 13: 1213806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645378

RESUMO

Introduction: Therapeutic monoclonal antibodies (mAbs) against the SARS-CoV-2 spike protein have been shown to improve the outcome of severe COVID-19 patients in clinical trials. However, novel variants with spike protein mutations can render many currently available mAbs ineffective. Methods: We produced mAbs by using hybridoma cells that generated from mice immunized with spike protein trimer and receptor binding domain (RBD). The panel of mAbs were screened for binding and neutralizing activity against different SARS-CoV-2 variants. The in vivo effectiveness of WKS13 was evaluated in a hamster model. Results: Out of 960 clones, we identified 18 mAbs that could bind spike protein. Ten of the mAbs could attach to RBD, among which five had neutralizing activity against the ancestral strain and could block the binding between the spike protein and human ACE2. One of these mAbs, WKS13, had broad neutralizing activity against all Variants of Concern (VOCs), including the Omicron variant. Both murine or humanized versions of WKS13 could reduce the lung viral load in hamsters infected with the Delta variant. Conclusions: Our data showed that broad-spectrum high potency mAbs can be produced from immunized mice, which can be used in humans after humanization of the Fc region. Our method represents a versatile and rapid strategy for generating therapeutic mAbs for upcoming novel variants.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes
7.
J Control Release ; 358: 128-141, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084889

RESUMO

Neutralising monoclonal antibody (mAb) is an important weapon in our arsenal for combating respiratory viral infections. However, the effectiveness of neutralising mAb has been impeded by the rapid emergence of mutant variants. Early administration of broad-spectrum mAb with improved delivery efficiency can potentially enhance efficacy and patient outcomes. WKS13 is a humanised mAb which was previously demonstrated to exhibit broad-spectrum activity against SARS-CoV-2 variants. In this study, a dual targeting formulation strategy was designed to deliver WKS13 to both the nasal cavity and lower airways, the two critical sites of infection caused by SARS-CoV-2. Dry powders of WKS13 were first prepared by spray drying, with cyclodextrin used as stabiliser excipient. Two-fluid nozzle (TFN) was used to produce particles below 5 µm for lung deposition (C-TFN formulation) and ultrasonic nozzle (USN) was used to produce particles above 10 µm for nasal deposition (C-USN formulation). Gel electrophoresis and size exclusion chromatography studies showed that the structural integrity of mAb was successfully preserved with no sign of aggregation after spray drying. To achieve dual targeting property, C-TFN and C-USN were mixed at various ratios. The aerosolisation property of the mixed formulations dispersed from a nasal powder device was examined using a Next Generation Impactor (NGI) coupled with a glass expansion chamber. When the ratio of C-TFN in the mixed formulation increased, the fraction of particles deposited in the lung increased proportionally while the fraction of particles deposited in the nasal cavity decreased correspondingly. A customisable aerosol deposition profile could therefore be achieved by manipulating the mixing ratio between C-TFN and C-USN. Dual administration of C-TFN and C-USN powders to the lung and nasal cavity of hamsters, respectively, was effective in offering prophylactic protection against SARS-CoV-2 Delta variant. Viral loads in both the lung tissues and nasal wash were significantly reduced, and the efficacy was comparable to systemic administration of unformulated WKS13. Overall, dual targeting powder formulation of neutralising mAb is a promising approach for prophylaxis of respiratory viral infections. The ease and non-invasive administration of dual targeting nasal powder may facilitate the widespread distribution of neutralising mAb during the early stage of unpredictable outbreaks.


Assuntos
Anticorpos Monoclonais , COVID-19 , Humanos , Pós , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Tamanho da Partícula , Inaladores de Pó Seco
8.
JHEP Rep ; 4(10): 100546, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36052220

RESUMO

Background & Aims: HEV variants such as swine genotypes within Paslahepevirus species balayani (HEV-A) and rat HEV (Rocahepevirus ratti; HEV-C1) cause chronic hepatitis E in immunocompromised individuals. There are few reliable and accessible small animal models that accurately reflect chronic HEV infection. We aimed to develop an immunocompromised rat model of chronic hepatitis E infection. Methods: In this animal model infection study, rats were immunosuppressed with a drug combination (prednisolone, tacrolimus, and mycophenolate mofetil) commonly taken by transplant recipients. Rats were challenged with human- and rat-derived HEV-C1 strains or a human-derived HEV-A strain. Viral load, liver function, liver histology, humoural, and cellular immune responses were monitored. Results: A high-dose (HD) immunosuppressive regimen consistently prolonged human- and rat-derived HEV-C1 infection in rats (up to 12 weeks post infection) compared with transient infections in low-dose (LD) immunosuppressant-treated and immunocompetent (IC) rats. Mean HEV-C1 viral loads in stool, serum, and liver tissue were higher in HD regimen-treated rats than in LD or IC rats (p <0.05). Alanine aminotransferase elevation was observed in chronically infected rats, which was consistent with histological hepatitis and HEV-C1 antigen expression in liver tissue. None (0/6) of the HD regimen-treated, 5/6 LD regimen-treated, and 6/6 IC rats developed antibodies to HEV-C1 in species-specific immunoblots. Reversal of immunosuppression was associated with clearance of viraemia and restoration of HEV-C1-specific humoural and cellular immune responses in HD regimen-treated rats, mimicking patterns in treated patients with chronic hepatitis E. Viral load suppression was observed with i.p. ribavirin treatment. HD regimen-treated rats remained unsusceptible to HEV-A infection. Conclusions: We developed a scalable immunosuppressed rat model of chronic hepatitis E that closely mimics this infection phenotype in transplant recipients. Lay summary: Convenient small animal models are required for the study of chronic hepatitis E in humans. We developed an animal model of chronic hepatitis E by suppressing immune responses of rats with drugs commonly taken by humans as organ transplant rejection prophylaxis. This model closely mimicked features of chronic hepatitis E in humans.

9.
Viruses ; 14(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746725

RESUMO

Hepatitis E virus (HEV) infection in humans is primarily caused by genotypes within Paslahepevirus species balayani (HEV-A). Rocahepevirus species ratti (HEV-C1, otherwise known as rat HEV) can also infect humans. HEV grows poorly in cell culture. Recent studies have reported that hyper-confluent cell layers, amphotericin B, MgCl2, progesterone, and dimethyl sulfoxide (DMSO) increase HEV yield in vitro. Here, we describe an independent evaluation of the effectiveness of these modifications in improving the yield of HEV-A genotype 4 (HEV-A4) and HEV-C1 from clinical samples in PLC/PRF/5 cells. We found that amphotericin B, MgCl2, and DMSO increased HEV yield from high-viral-load patient stool samples, while progesterone was not effective. Yield of HEV-C1 was lower than HEV-A4 across all medium conditions, but was boosted by DMSO. HEV-A4 could be maintained for over 18 months in amphotericin B- and MgCl2-containing medium, with the demonstration of viral antigen in supernatants and infected cells. We also evaluated various protocols to remove pseudo-envelopes from cell culture-derived HEV. Treating cell culture supernatant with NP-40 was the most effective. Our findings identify key modifications that boost HEV growth in vitro and illustrate the importance of independent verification of such studies using diverse HEV variants and cell lines.


Assuntos
Vírus da Hepatite E , Hepatite E , Anfotericina B/farmacologia , Animais , Técnicas de Cultura de Células/métodos , Dimetil Sulfóxido , Humanos , Ratos
10.
Clin Infect Dis ; 75(2): 288-296, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34718428

RESUMO

BACKGROUND: Hepatitis E virus (HEV) variants belonging to Orthohepevirus species A (HEV-A) are the primary cause of human hepatitis E. However, we previously reported that Orthohepevirus species C genotype 1 (HEV-C1), a divergent HEV variant commonly found in rats, also causes hepatitis in humans. Here, we present a clinical-epidemiological investigation of human HEV-C1 infections detected in Hong Kong, with an emphasis on outcomes in immunocompromised individuals. METHODS: A surveillance system for detecting human HEV-C1 infections was established in Hong Kong. Epidemiological and clinical characteristics of HEV-C1 cases identified via this system between 1 August 2019 and 31 December 2020 were retrieved. Phylogenetic analysis of HEV-C1 strain sequences was performed. Infection outcomes of immunocompromised individuals with HEV-A and HEV-C1 infections were analyzed. RESULTS: HEV-C1 accounted for 8 of 53 (15.1%) reverse-transcription polymerase chain reaction (RT-PCR)-confirmed HEV infections in Hong Kong during the study period, raising the total number of HEV-C1 infections detected in the city to 16. Two distinct HEV-C1 strain groups caused human infections. Patients were elderly and/or immunocompromised; half tested negative for HEV immunoglobulin M. Cumulatively, HEV-C1 accounted for 9 of 21 (42.9%) cases of hepatitis E recorded in immunocompromised patients in Hong Kong. Immunocompromised HEV-C1 patients progressed to persistent hepatitis at similar rates (7/9 [77.8%]) as HEV-A patients (10/12 [75%]). HEV-C1 patients responded to oral ribavirin, although response to first course was sometimes poor or delayed. CONCLUSIONS: Dedicated RT-PCR-based surveillance detected human HEV-C1 cases that evade conventional hepatitis E diagnostic testing. Immunosuppressed HEV-C1-infected patients frequently progress to persistent HEV-C1 infection, for which ribavirin is a suitable treatment option.


Assuntos
Hepatite C , Vírus da Hepatite E , Hepatite E , Idoso , Animais , Vírus da Hepatite E/genética , Hong Kong/epidemiologia , Humanos , Filogenia , RNA Viral/genética , Ratos , Ribavirina
11.
J Hepatol ; 74(6): 1315-1324, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33845058

RESUMO

BACKGROUND & AIMS: Rat hepatitis E virus (Orthohepevirus species C; HEV-C1) is an emerging cause of viral hepatitis in humans. HEV-C1 is divergent from other HEV variants infecting humans that belong to Orthohepevirus species A (HEV-A). This study assessed HEV-C1 antigenic divergence from HEV-A and investigated the impact of this divergence on infection susceptibility, serological test sensitivity, and vaccine efficacy. METHODS: Immunodominant E2s peptide sequences of HEV-A and HEV-C1 were aligned. Interactions of HEV-C1 E2s and anti-HEV-A monoclonal antibodies (mAbs) were modeled. Recombinant peptides incorporating E2s of HEV-A (HEV-A4 p239) and HEV-C1 (HEV-C1 p241) were expressed. HEV-A and HEV-C1 patient sera were tested using antibody enzymatic immunoassays (EIA), antigen EIAs, and HEV-A4 p239/HEV-C1 p241 immunoblots. Rats immunized with HEV-A1 p239 vaccine (Hecolin), HEV-A4 p239 or HEV-C1 p241 peptides were challenged with a HEV-C1 strain. RESULTS: E2s sequence identity between HEV-A and HEV-C1 was only 48%. There was low conservation at E2s residues (23/53; 43.4%) involved in mAb binding. Anti-HEV-A mAbs bound HEV-C1 poorly in homology modeling and antigen EIAs. Divergence resulted in low sensitivity of commercial antigen (0%) and antibody EIAs (10-70%) for HEV-C1 diagnosis. Species-specific HEV-A4 p239/HEV-C1 p241 immunoblots accurately differentiated HEV-A and HEV-C1 serological profiles in immunized rats (18/18; 100%) and infected-patient sera (32/36; 88.9%). Immunization with Hecolin and HEV-A4 p239 was partially protective while HEV-C1 p241 was fully protective against HEV-C1 infection in rats. CONCLUSIONS: Antigenic divergence significantly decreases sensitivity of hepatitis E serodiagnostic assays for HEV-C1 infection. Species-specific immunoblots are useful for diagnosing HEV-C1 and for differentiating the serological profiles of HEV-A and HEV-C1. Prior HEV-A exposure is not protective against HEV-C1. HEV-C1 p241 is an immunogenic vaccine candidate against HEV-C1. LAY SUMMARY: Rat hepatitis E virus (HEV-C1) is a new cause of hepatitis in humans. Using a combination of methods, we showed that HEV-C1 is highly divergent from the usual cause of human hepatitis (HEV-A). This divergence reduces the capacity of existing tests to diagnose HEV-C1 and also indicates that prior exposure to HEV-A (via infection or vaccination) is not protective against HEV-C1.


Assuntos
Antígenos de Hepatite/imunologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Hepatite E/prevenção & controle , Hepatite E/veterinária , Imunogenicidade da Vacina/imunologia , Vacinação/métodos , Eficácia de Vacinas , Vacinas Sintéticas/administração & dosagem , Vacinas contra Hepatite Viral/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sequência de Bases , Criança , Epitopos/imunologia , Feminino , Genótipo , Anticorpos Anti-Hepatite/imunologia , Hepatite E/sangue , Hepatite E/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Adulto Jovem
12.
Lancet Microbe ; 1(3): e111-e118, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33230504

RESUMO

BACKGROUND: The role of subclinical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in perpetuating the COVID-19 pandemic is unknown because population seroprevalence data are absent. We aimed to establish the sensitivity and specificity of our enzyme immunoassay and microneutralisation assay, and the seroprevalence of SARS-CoV-2 in Hong Kong before and after the pandemic, as well as in Hong Kong residents evacuated from Hubei province, China. METHODS: We did a multicohort study in a hospital and university in Hong Kong. We evaluated the sensitivity of our enzyme immunoassay and microneutralisation assay with RT-PCR data from patients positive for SARS-CoV-2 and the specificity of our enzyme immunoassay and microneutralisation assay with archived serum samples collected before 2019. We compared the seropositivity of the general population of Hong Kong before and after the pandemic had begun, and determined the seropositivity of Hong Kong residents evacuated from Hubei province, China, in March, 2020. FINDINGS: Between Feb 26 and March 18, 2020, we assessed RT-PCR samples from 45 patients who had recovered from COVID-19 to establish the sensitivity of our enzyme immunoassay and microneutralisation assay. To establish the specificity of these assays, we retrieved archived serum. The sensitivity was 91·1% (41 of 45 [95% CI 78·8-97·5]) for the microneutralisation assay, 57·8% (26 of 45 [42·2-72·3]) for anti-nucleoprotein IgG, 66·7% (30 of 45 [51·1-80·0]) for anti-spike protein receptor binding domain (RBD) IgG, and 73·3% (33 of 45 [58·1-85·4]) for enzyme immunoassay (either positive for anti-nucleoprotein or anti-RBD IgG). The specificity was 100% (152 of 152 [95% CI 97·6-100·0]) for both the enzyme immunoassay and microneutralisation assay. Among the Hong Kong general population, 53 (2·7%) of 1938 were enzyme immunoassay positive, but of those who were positive, all 53 were microneutralisation negative, and no significant increase was seen in the seroprevalence between April 12, 2018, and Feb 13, 2020. Among asymptomatic Hubei returnees, 17 (4%) of 452 were seropositive with the enzyme immunoassay or the microneutralisation assay, with 15 (88%) of 17 seropositive with the microneutralisation assay, and two familial clusters were identified. INTERPRETATION: Our serological data suggest that SARS-CoV-2 is a new emerging virus. The seropositivity rate in Hubei returnees indicates that RT-PCR-confirmed patients only represent a small proportion of the total number of cases. The low seroprevalence suggests that most of the Hong Kong and Hubei population remain susceptible to COVID-19. Future waves of the outbreak are inevitable without a vaccine or antiviral prophylaxis. The role of age-related cross reactive non-neutralising antibodies in the pathogenesis of COVID-19 warrants further investigation. FUNDING: Richard and Carol Yu, May Tam Mak Mei Yin, Shaw Foundation (Hong Kong), Michael Tong, Marina Lee, and the Government Consultancy Service (see acknowledgments for full list).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , China/epidemiologia , Hong Kong/epidemiologia , Humanos , Imunoglobulina G , Pandemias , Estudos Soroepidemiológicos
13.
Front Microbiol ; 11: 1156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612582

RESUMO

Hepatitis E virus (HEV) is the main pathogen of hepatitis worldwide. However, its infection biology and pathogenesis remain largely unknown. Suitable small-animal models are required to advance the study of HEV infection. Although an efficient model of genotype 1 (gt1) and gt3 HEV infection has been established in human liver chimeric mice, the infectivity of gt4 HEV infection in mice has not been comprehensively characterized. In this study, immunocompromised BALB/c nude, immunocompetent BALB/c, and C57BL/6 mice were inoculated with either gt3 or gt4 HEV (19 HEV strains, including human, swine, macaque-adapted, and cow HEV strains). Infectivity was identified by viral RNA and antigen detection, inflammation, and histopathological analysis. Then, HEV-infected BALB/c mice were treated with antiviral drugs. Acute HEV infection was established in BALB/c mice inoculated with eight gt4 HEV strains. However, gt3 HEV strains failed to achieve active HEV infection. HEV infection was established in BALB/c nude and regular mice inoculated with gt4 HEV but not in C57BL/6 mice. Gt4 HEV infection resulted in rapid viremia and high titers in feces, sera, and replication sites. HEV infection in mice showed no gender preference. Furthermore, chronic gt4 HEV infection was well imitated in BALB/c mice for 32 weeks and caused liver fibrosis. CONCLUSION: BALB/c mice have a great potential for reproducing the process of gt4 HEV infection. The successful establishment of a gt4 HEV small-animal model provides an opportunity to further understand HEV infection biology and zoonotic transmission and develop anti-HEV vaccine.

14.
Microorganisms ; 8(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384808

RESUMO

Hepatitis E virus (HEV) is an important cause of hepatitis, which can be transmitted via the bloodborne route. However, risk of hepatitis E among persons who inject drugs (PWIDs) is poorly understood. This study aimed to elucidate whether PWIDs are at risk for hepatitis E. We performed HEV IgM, IgG and nucleic acid detection on a cohort of 91 PWIDs and 91 age- and sex-matched organ donors. Blood HEV IgG was measured using the WHO HEV antibody standard. The effects of age, gender and addictive injection use on HEV serostatus and concentration were assessed. HEV IgG seroprevalence was 42/91 (46.2%) in the PWID group and 20/91 (22%) in the donor group (odds ratio = 3.04 (1.59-5.79), p = 0.0006). The median HEV IgG concentration was 5.8 U/mL (IQR: 2.5-7.9) in the PWID group and 2.1 U/mL (IQR: 1.2-5.3) in the donor group (p = 0.005). Increasing age and addictive injection use were significantly associated with HEV IgG serostatus, but only addictive injection use was associated with HEV IgG concentration (p = 0.024). We conclude that PWIDs are at increased risk for hepatitis E and are prone to repeated HEV exposure and reinfection as indicated by higher HEV IgG concentrations.

15.
Virology ; 541: 150-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32056713

RESUMO

Hepatitis E virus (HEV) is the main pathogen of hepatitis E infections with multiple extrahepatic replication sites. The presence of HEV RNA in the semen of infertile males suggests HEV replicates in the male genital tract. However, the mechanism is largely remained elusive. A BALB/c-based animal model was used to evaluate the effects of HEV infection on the testicular damage. HEV RNA was detected in feces, blood and livers from 7 to 28 days post-inoculation (dpi), while was positive in male genital tract from 7 to 70 dpi. Positive signals of HEV antigens were observed in testes, epididymides and seminal vesicles (SVs). Impaired sperm quality, destroyed the blood-testis barrier (BTB) and drastically decreased spermatogonia suggested that HEV infection causes testicular damage. Antiviral immune response was barely found in the testes. Results demonstrated that HEV replicates in male genital tract, causes testicular damage, and consequently results in flawed fertility.


Assuntos
Hepatite E/patologia , Testículo/patologia , Animais , Apoptose , Epididimo/patologia , Epididimo/virologia , Feminino , Hepatite E/complicações , Hepatite E/imunologia , Imunidade Inata , Infertilidade Masculina/etiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Testículo/virologia , Testosterona/sangue , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...